Create your own at MyNiceProfile.com

Kamis, 18 Juni 2015

KELISTRIKAN DAN KESELAMATAN LIFT


Desain Elevator menggunakan motor listrik, tali, dan counter weight bukan peralatan hidrolik. Rel panduan utama sudah terpasang pada setiap sisi kotak penumpang (box)  dan sepasang tambahan rel penyeimbang terletak pada satu sisi atau di belakang. Mesin diarahkan, bersama dengan peralatan drive terkait, umumnya terletak di atas hoistway di ruang mesin penthouse. Dalam beberapa situasi terbatas, dapat terletak di sebelah hoistway pada pendaratan lebih rendah. Pengaturan yang terakhir ini disebut sebagai traksi basement.

A.    Motor digerakan  oleh listrik AC atau DC.
Mesin roda gigi cacing untuk mengontrol gerakan mekanik kabin lift dengan “rolling” baja hoist tali melalui puli katrol penggerak yang melekat ke gearbox digerakkan oleh motor kecepatan tinggi. Mesin ini umumnya pilihan terbaik untuk bangunan tinggi yang menyediakan  ruang bawah tanah dan penggunaan traksi overhead untuk kecepatan hingga 500 ft / menit (2,5 m / s)memungkinkan kontrol kecepatan yang akurat dari motor, untuk kenyamanan penumpang, sebuah kerekan DC motor didukung oleh AC / DC motor-generator (MG) adalah seperangkat solusi yang diinginkan dalam lalu lintas tinggi instalasi lift selama beberapa dekade . MG set juga biasanya didukung pengontrol relay dari lift, yang memiliki keuntungan tambahan elektrik mengisolasi lift dari seluruh sistem listrik sebuah bangunan, sehingga menghilangkan lonjakan daya sementara dalam pasokan listrik bangunan yang disebabkan oleh motor start  dan stop (menyebabkan redup pencahayaan setiap kali lift digunakan misalnya), serta gangguan pada peralatan listrik lain yang disebabkan oleh lengkung dari kontaktor relay di sistem kontrol.
B.     Mesin traksi gearless
Mesin traksi dengan roda non gigi, putaran  torsi motor listrik didukung baik oleh AC atau DC. Dalam hal ini, puli katrol penggerak langsung melekat ke ujung motor. Lift traksi gearless dapat mencapai kecepatan hingga 2.000 ft / menit (10 m / s), atau bahkan lebih tinggi. Rem listrik terpasang antara motor dan drive sheave (atau gearbox) untuk menahan lift diam di lantai. Rem ini biasanya tipe Drum eksternal dan digerakkan oleh gaya pegas dan ditahan terbuka elektrik, listrik mati akan menyebabkan rem untuk bekerja  dan mencegah lift jatuh (lihat keselamatan melekat dan teknik keamanan).
C.     DC Motors yg digunakan pada Elevator
1.      M-G Set (motor/generator)
Sebuah motor-generator (MG set atau dynamotor untuk dinamo-motor) adalah perangkat untuk mengkonversi daya listrik ke bentuk lain. Motor-generator set yang digunakan untuk mengkonversi frekuensi, tegangan, atau fase. Satu set motor generator yang dapat terdiri dari 2 motor yang berbeda yg digabungkan bersama-sama, satu unit motor-generatormemiliki dua kumparan rotor dari motor dan pembangkit sekitar rotor tunggal, dan kedua kumparan berbagi bidang yang sama atau magnet.

2.      The Silicon-Controlled Rectifier (SCR) –DC
Kecepatan motor DC dapat dikendalikan dengan menggunakan SCR di AC sirkuit seperti yang ditunjukkan pada gambar di bawah. A dan B SCR penyearah, tegangan o / p transformator T1 dan mengaplikasikan tegangan DC berdenyut ke gulungan dinamo dan penyearah “C” memasok tegangan mirip dengan motor berliku lapangan. O / p dari SCR penyearah dapat dikendalikan dengan mengendalikan arus  masuk ke gerbang SCR. Jadi, cara SCR ini dapat beroperasi pada berbagai tingkat konduksi dengan  menerapkan tegangan bervariasi ke dinamo motor, cara ini dapat megendalikan kecepatan motor DC. Jika perilaku SCR untuk jangka waktu yang lama tegangan lebih diterapkan ke gulungan dinamo dan kecepatan meningkat motor. Untuk kasus berikutnya tindakan, operasi akan menjadi sebaliknya dengan yg dpt tembus.

3.      PWM-DC
Metode Pulse Width Modulation (PWM) adalah metode yang cukup efektif untuk mengendalikan kecepatan motor DC. PWM ini bekerja dengan cara membuat gelombang persegi yang memiliki perbandingan pulsa high terhadap pulsa low yang telah tertentu, biasanya diskalakan dari 0 hingga 100%. Gelombang persegi ini memiliki frekuensi tetap (biasanya max 10 KHz) namun lebar pulsa high dan low dalam 1 periode yang akan diatur. Perbandingan pulsa high terhadap low ini akan menentukan jumlah daya yang diberikan ke motor DC. Untuk menjalankan motor DC dengan PWN tidak dapat digunakan relay, melainkan harus digunakan rangkaian driver motor DC lainnya. Rangkaian ini yang paling sederhana berupa transistor yang disusun secara Darlington. Apabila diinginkan motor DC dapat bergerak 2 arah, maka diperlukan menyusun rangkaian H-Bridge. Selain transistor, dapat juga digunakan IC driver motor DC khusus. Anda dapat juga menggunakan modul driver motor DC yang siap pakai untuk mikrokontroler.
D.    AC Motor
1.      Variable Voltage
2.      V V V F Inv. (V/Hz) Open/Closed Loop
3.      Vector Control Inv.  Open/Closed Loop
4.      Synchronous PM Inv. Closed Loop
5.      Regen or Non-Regen

E.     Kontrol Elevator
Lift pada awalnya tidak memiliki posisi pendaratan otomatis. Lift dioperasikan oleh operator lift menggunakan kontroler motor. Kontroler ini terkandung dalam wadah silinder tentang ukuran dan bentuk wadah kue dan ini dioperasikan melalui pegangan memproyeksikan. Hal ini memungkinkan kontrol atas energi yang dipasok ke motor (terletak di bagian atas poros lift atau di samping bagian bawah poros lift) dan sebagainya memungkinkan lift yang akan akurat diposisikan – jika operator itu cukup terampil. Lebih biasanya operator harus “jogging” kontrol untuk mendapatkan lift yang cukup dekat dengan titik pendaratan dan kemudian mengarahkan penumpang keluar dan masuk untuk “melihat langkah”. Beberapa lift barang tua dikendalikan oleh switch dioperasikan dengan menarik tali yang berdekatan. Keselamatan Interlocks memastikan bahwa pintu dalam dan luar ditutup sebelum lift diperbolehkan untuk bergerak. Sebagian besar lift yang dikendalikan secara manual yang lebih tua telah dipasang dengan kontrol otomatis atau semi-otomatis.
Lift otomatis mulai muncul pada awal 1930-an . Sistem elektromekanis ini menggunakan sirkuit logika relay  untuk mengontrol kecepatan, posisi dan operasi pintu elevator atau kabin dari lift. Sistem Otis Autotronik dari awal 1950-an membawa sistem prediksi awal yang dapat mengantisipasi pola lalu lintas dalam bangunan untuk menyebarkan gerakan lift dengan cara yang paling efisien. Relay yang dikendalikan sistem lift tetap umum sampai tahun 1980-an, dan penggantian bertahap sistem ini dengan solid-state kontrol berbasis  mikroprosesor  yang sekarang menjadi standar industri lift.

F.      HARDWIRED CIRCUITS
Pada perancangan perangkat keras lift terdapat banyak komponen elektronika untuk dapat membangun sebuah sistem lift. Komponen – komponen yang dibutuhkan dalam membangun sistem lift ini dibutuhkan beberapa jenis sensor dan komponen – komponen elektronika lainnya. Berikut komponen yang digunakan pada sistem liftserta rangkaian elektronika untuk mengkontrol perangkat keras antara lain :
a.    Kontrol Tombol
b.    Kontrol Driver Motor DC dan Motor DC Gear
c.    Kontrol Penstabil Tegangan (Regulator)
d.   Power On Reset
e.    Kontrol Alarm
f.     Sensor Limit Switch

G.    BRAKE CONTROL
Lift menggabungkan beberapa fitur keamanan untuk mencegah kabin  menabrak bagian bawah shaft. Pengaman diinstal pada kabin bisa mencegah jenis kecelakaan yg terjadi ketika rem motor gagal atau tali kawat cangkang tiba2 putus Namun, desain yang melekat pada pengaman kabin dibuat untuk tidak berlaku ke arah atas.
Dalam arah ke atas, rem motor diperlukan untuk menghentikan kabin ketika kondisi darurat terjadi. Dalam operasi normal, rem motor hanya berfungsi sebagai rem parkir untuk menahan kabin saat berhenti. Namun, ketika kondisi darurat terdeteksi, desain kontrol lift sistem moderen hanya mengandalkan rem motor  untuk menghentikan kabin.
Electrical Braking (Rem pada Motor Electric) :
a.       DC injection braking.
b.      Plugging.
c.       Eddy current braking.
d.      Dynamic resistor braking.
e.       Regenerative braking.

H.    GOVERNOR ROPE MONITOR
Tali governor  pada lift disediakan dengan rem tambahan yang merupakan rem fail safe dan yang beroperasi untuk menghentikan gerakan tali governor ketika mobil lift bergerak dari pendaratan dengan pintu terbuka. Rem ini mencakup dua rahang gripper tali di ruang mesin di bawah sheave governor, yang rahang diadakan jauh dari tali governor oleh solenoid selama listrik tersedia untuk memberi energi solenoida. Bila catu daya ke solenoida terganggu, rahang yang dirilis jatuh oleh gravitasi terhadap satu sama lain untuk pegangan tali governor. Rem mobil darurat dengan demikian tersandung dan pergerakan mobil berhenti. Rem juga dapat diberikan untuk mengendalikan tali penyeimbang governor.
I.        BACK OUT OF OVER TRAVEL SWITCH
Overtravel (posisi di luar jarak pengoperasian)  aktif aktuasi kadang-kadang terjadi pada lift tambang. Banyak faktor  dapat menyebabkan hal ini terjadi seperti perubahan suhu, over loading dari alat angkut, peregangan tali, atau berhenti darurat. Limit switches, peralatan ini dipasang pada lantai paling bawah dan paling atas. Peralatan ini untuk mencegah terjadinya over travel lift baik saat lift naik maupun saat lift turun.
CABIN AND COUNTERWEIGHT BUFFER SWITCHES (Penyanggah Ruang Kabin)

J.       DOOR SAFETY SWITCH
Peralatan ini dipasang terintegrasi dengan door lock device, peralatan ini bekerja secara electrical, apabila pintu dibuka maka lift tidak akan dapat difungsikan untuk jalan.


Terima Kasih Sumber :
www.wikipedia.com
www.Academia.edu
www.Google.com

KESELAMATAN PESAWAT UAP DAN BEJANA DENGAN BAHAYA PELEDAKAN


Ketel uap merupakan suatu pesawat yang dibuat atau digunakan untuk mengubah air ada didalamnya menjadi sebagian uap dengan jalan pemanasan. Pemanasan dilakukan dari proses pembakaran sehingga dalam sistem tenaga uap selalu terdapat tempat pembakaran.

Prinsip kerhjanya yaitu dengan semakin tingginya tekanan uap maka setiap ketel harus mampu menahan tekanan uap ini. Dengan memanfaatkan tekanan uap ini maka dapat digunakan untuk menggerakan mesin atau generator untuk menghasilkan energi listrik. Sedangkan, Bejana tekan adalah sesuatu untuk menampung fluida yang bertekanan atau bejana selain pesawat uap yang di dalamnya terdapat tekanan yang melebihi udara luar dan dipakai untuk menampun gas atau gas campuran termasuk udara baik terkempa menjadi cair atau dalam keadaan larut atau beku.

Pemanfaatan bejana tekan akhir-akhir ini telah berkembang pesat di berbagai proses industri barang dan jasa maupun untuk fasilitas umum dan bahkan di rumah-rumah tangga. Pesawat uap dan bejana tekan merupakan sumber bahaya termasuk operator pesawat uap yang mana potensi bahaya ditimbulkan akibat penggunaan atau pengoperasian pesawat uap dan bejana tekan meliputi semburan api, air panas, gas, fluida, uap panas, debu, panas/suhu tinggi, bahaya kejut listrik, dan peningkatan tekanan atau peledakan. Agar kecelakaan tidak timbul dalam kerja yang menggunakan pesawat uap maupun bejana tekan, maka pemahaman tentang pesawat uap dan bejana tekan serta syarat-syarat K3 adalah sangat penting supaya dapat melakukan pengawasan K3 pada pesawat uap dan bejana tekan. Hal ini juga ditetapkan dalam UU No.1 Tahun 1970 pasal 3. Pengawasan tidak hanya pada produk namun diawali dari proses produksi atau pembuatan pesawat uap dan bejana tekan yang banyak dilakukan proses pengelasan, pengujiaan produk hingga penerbitan ijin pemakaian pesawat uap dan bejana tekan. Suatu ketel harus memenuhi syarat-syarat sebagai berikut :
1.      Harus hemat dalam pemakaian bahan bakar. Hal ini dinyatakan dalam rendemen atau daya guna ketel.
2.      Berat ketel dan pemakaian ruangan pada suatu hasil uap tertentu harus kecil.
3.      Paling sedikit harus memenuhi syarat-syarat dari Direktorat Bina Norma Keselamatan Kerja Departemen Tenaga Kerja.
Sumber bahaya pada pesawat uap terutama akibat dari pada :
1.      Bila manometer tidak berfungsi dengan baik, atau bila tidak dikalibrasi dapat menimbulkan peledakan karena si operator tidak mengetahui tekanan yang sebenarnya dalam boiler dan alat lain tidak berfungsi.
2.      Bila safety valve tidak berfungsi dengan baik karena karat atau sifat pegasnya menurun.
3.      Bila gelas duga tidak berfungsi dengan baik yang mana nosel-noselnya atau pipa-pipanya tersumbat oleh karat sehingga jumlah air tidak dapat terkontrol lagi.
4.      Bila air pengisi ketel tidak memenuhi syarat
5.      Bila boiler tidak dilakukan blow down dapat menimbulkan scall atau tidak sering dikunci.
6.      Terjadi pemanasan lebih karena kebutuhan produksi uap
7.      Tidak berfungsinya pompa air pengisi ketel
8.      Karena perubahan tak sempurna atau rouster, nozel fuel tidal berfungsi dengan baik.
9.      Karena umur boiler sudah tua sehingga material telah mengalami degradasi kualitas.  
            Dalam proses pembuatannya perlu dilakukan pemilihan material yang tahan korosi bila terlalu mahal atau tidak ada di pasaran maka dapat dipilih material dengan laju korosi yang paling lambat namun perlu dilakukan inspeksi secara berkala untuk menghindari terjadinya kebocoran atau ledakan.

Terima Kasih Sumber :
www.wikipedia.com
www.Academia.edu
www.Google.com